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Abstract 
 

This document provides verification test results for normal, lognormal, and uniform distributions 

that are used in Sandia’s Latin Hypercube Sampling (LHS) software.  The purpose of this testing is 

to verify that the sample values being generated in LHS are distributed according to the desired 

distribution types.  The testing of distribution correctness is done by examining summary statistics, 

graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chi-

square test, the Kolmogorov-Smirnov test, and the Anderson-Darling test.  The overall results from 

the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is 

acceptable.  
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1.  Introduction 

This document provides verification test results for the normal, lognormal, and uniform 

distributions that are used in Sandia’s Latin Hypercube Sampling (LHS) software.  The purpose of 

this testing is to verify that the sample values being generated in LHS are distributed according to 

the desired distribution types.  The testing of distribution correctness is done by examining 

summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests 

such as the Chi-square test, the Kolmogorov-Smirnov test, and the Anderson-Darling test.   

 

This document supports the Advanced Simulation and Computing (ASC) program’s Verification 

and Validation (V&V) milestones.  Many milestones use DAKOTA to perform uncertainty 

quantification (UQ) studies. The goal of uncertainty quantification is to understand the effect input 

uncertainties have on the uncertainty of the output, usually called a performance measure or 

measure of interest.   A common method of performing UQ involves the following steps:  

1. Assume certain distributions on the uncertain input variables or input parameters 

2. Sample from those distributions 

3. Run the simulation model (e.g., a finite element code) with the sampled values 

4. Repeat Steps 1-3 with different sample draws to build up a distribution of the outputs.   

 

In practice, one needs to have a method for generating random samples from specified 

distributions. At Sandia, we often use Latin Hypercube Sampling to generate samples.  For many 

ASC codes, we use DAKOTA to perform UQ.  This is done by calling the UNIX version of LHS 

from within DAKOTA.  DAKOTA is a software toolkit which can call simulation models 

iteratively to perform various types of analysis such as uncertainty quantification, reliability 

analysis, parameter studies, and optimization studies.   To perform an uncertainty quantification 

study in DAKOTA, one specifies the distributions on the input parameters of interest, tells 

DAKOTA to use LHS, and then DAKOTA does the overhead of calling the LHS code, getting 

the generated sample values from LHS, sending these values to the simulation model, and 

waiting for the simulation model to return the corresponding output values.   DAKOTA allows 

for parallel execution of samples if desired, and DAKOTA collates the results and outputs 

various statistical measures of interest such as moments and percentiles of the output 

distribution, correlations between inputs and outputs, etc.  

This verification study is not focused on DAKOTA.  Rather it is focused on the specific version of 

LHS that is implemented within DAKOTA.  The LHS code has a long pedigree and background, as 

explained in the next section.  The version of LHS that is implemented in DAKOTA is what we 

refer to as the LHS UNIX Library/Standalone version because it may be called in library mode from 

DAKOTA or it may be called as a standalone code.  The UNIX version is very similar to the latest 

LHS PC version developed by Greg Wyss, Sharon Daniel, and Kelly Jorgenson outlined in 

SAND98-0210 (Wyss and Jorgensen, 1998).  However, a group of DAKOTA developers including 

Michael Eldred (the PI of the DAKOTA project), Laura Swiler, and Shannon Brown have made 

some modifications to the code to port it to the UNIX/Linux environment and make it more 

portable.  LHS has undergone much testing over the years, and its widespread use has resulted in a 
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lot of distributed testing.  Also, Wyss and Jorgenson did some testing of the LHS distributions in 

1993.  However, these test results were not formally written up and since the code has undergone 

some revisions with the porting to a UNIX environment, we thought it best to have a fresh start for 

the ASC milestones.  DAKOTA has many advanced capabilities for UQ, including analytic 

reliability methods, stochastic finite element, and optimization under uncertainty.  However, most 

users start with LHS for UQ:  LHS is a core capability.  LHS is used from within DAKOTA to 

support many of the ASC UQ milestones.  This is the rationale for performing the verification 

studies on LHS.   

 

The outline of this report is as follows:  Section 2 provides information about the pedigree and 

background of the LHS code.  Section 3 provides details about the verification and comparison 

methods used.  Section 4 provides results for the normal distribution, Section 5 provides results for 

the lognormal distribution, and Section 6 provides results for the uniform distribution.  Section 7 

provides the results from some large scale testing, and Section 8 is the summary.  

 

2.  LHS Pedigree and Background 

For more than twenty years, the Latin hypercube sampling (LHS) program has been successfully 

used to generate multivariate samples of statistical distributions.  Its ability to use either Latin 

hypercube sampling with both random and restricted pairing methods has made it an important part 

of uncertainty analyses in areas ranging from probabilistic risk assessment (PRA) to complex 

simulation modeling.   

 

Latin hypercube sampling was developed to address the need for uncertainty assessment for a 

particular class of problems.  Consider a variable Y that is a function of other variables X1, X2, …, 

Xk.  This function may be very complicated, for example, a computer model.  A question to be 

investigated is “How does Y vary when the Xs vary according to some assumed joint probability 

distribution?”  Related questions are “What is the expected value of Y?” and  “What is the 99
th
 

percentile of Y?” 

 

A conventional approach to these questions is to apply Monte Carlo sampling.  By sampling 

repeatedly from the assumed joint probability density function of the Xs and evaluating Y for each 

sample, the distribution of Y, along with its mean and other characteristics, can be estimated.  This 

approach yields reasonable estimates for the distribution of Y if the value of n is quite large.  

However, since a large value of n requires a large number of computations from the function or 

program of interest, which is potentially a very large computational expense, additional methods of 

uncertainty estimation were sought. 

 
An alternative approach, which can yield more precise estimates, is to use a constrained Monte 

Carlo sampling scheme based on the idea of sample stratification.  One such scheme, developed by 

McKay, Conover, and Beckman (1979), is Latin Hypercube Sampling. LHS selects n different 

values from each of k variables X1, … Xk in the following manner.  The range of each variable is 

divided into n nonoverlapping intervals on the basis of equal probability.  One value from each 
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interval is selected at random with respect to the probability density in the interval.  The n values 

thus obtained for X1 are paired in a random manner (equally likely combinations) with the n values 

of X2.  These n pairs are combined in a random manner with the n values of X3 to form n triplets, 

and so on, until n k-tuplets are formed.  This is the Latin hypercube sample.  It is convenient to 

think of this sample (or any random sample of size n) as forming an (n × k) matrix of input where 

the i
th
 row contains specific values of each of the k input variables to be used on the i

th
 run of the 

computer model.  For more information about the sampling method, see Wyss and Jorgenson 

(SAND98-0210) or Swiler and Wyss (SAND2004-2439). 

 

The original version of LHS developed at Sandia National Laboratories was documented in 

SAND83-2365 (Iman and Shortencarier).  This code was substantially revised, extended, and 

upgraded in the mid-1990s.  Gregory Wyss, Sharon Daniel, and Kelly Jorgensen designed and 

implemented much of this upgrade to the LHS software, converting it from Fortran 77 to Fortran 

90, adding more than 25 new distributions, and including functionality that made the code much 

more portable.  The revised version also included development of a Windows-based user interface 

to assist the user with input preparation as well as a graphical output system to support plotting of 

distributions generated by LHS.  The documentation of the capabilities of the revised LHS code is 

presented in SAND98-0210 (Wyss and Jorgensen, 1998).   

 

Michael Eldred, Sharon Daniel, Laura Swiler, and Shannon Brown ported the 1998 version of LHS 

(which was primarily designed for a Windows platform) to a Linux/UNIX environment in 2003-

2004.  This process involved writing some additional functionality to allow the LHS code to be 

called as a library from within the DAKOTA software environment (“input-by-call” vs. input by 

file), as well as some changes to modernize the code and make it more compatible with the needs of 

advanced simulators (e.g., converting single precision variables to double precision).  The version 

of LHS that runs under a Linux or UNIX operating system can be compiled to run in two ways:  

called as a library or as a standalone LHS code run with file input (SAND2004-2439).   

 

The Latin Hypercube Sampling code has a long pedigree, as evidenced by its history outlined 

above.  While code longevity does not directly imply anything about code verification, it is likely 

that significant problems with the distributions would be noticed over many years of use.  The 

purpose of this document is to supplement any previous testing of the distributions done formally or 

informally, and provide written documentation of the test results.  
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3.  Verification Test Methods 

There are many methods available to compare sample values with the true underlying distribution.  

This section draws heavily on the Simulation Modeling and Analysis textbook by Law and Kelton 

[1991] as well as the information provided by the National Institute of Standards in their 

Engineering Statistics Handbook [NIST e-Handbook]. 

 

There are three approaches we take for verification of the LHS distributions:  

1. Summary Statistics 

2. Graphical Comparisons 

3. Formal Statistical Tests 

 

These are explained in more detail below.  Much of the actual testing was done using the Minitab 

and JMP software packages.   

Summary Statistics 

One of the first things to look at when analyzing a set of sample values are summary statistics about 

the sample, including the mean, standard deviation, skewness, and kurtosis.  The skewness 

measures the symmetry of the distribution, and the kurtosis measures the weight of the tails in the 

distribution.  Quantile summaries, which list various percentiles of the distribution, are also useful 

in determining whether the underlying distribution is symmetric or skewed, identifying any outliers, 

etc.  Histograms and box plots (which are graphical representation of the quantiles, usually the 

quartiles) are also useful to understand the shape and spread of the data.  

 

Finally, in the case where the samples are generated from a known distribution, one can perform 

statistical tests of various hypothesis, such as does the sample population mean equal the “true” 

mean with some confidence level, etc.?  Comparing statistical measures such as mean and variance 

with the “true” distribution does not test the correctness of the entire distribution, but it provides 

useful information in the initial phase of verification. 

 

Graphical Comparisons 

Although these are not “formal” tests, one of the most common ways of testing for normality 

involves a graphical comparison.   A probability plot graphically shows the comparison between 

the empirical distribution function (ECDF) calculated from the data, and the CDF of the “true” 

distribution function.  Given a set of data, X1, X2, …,XN, the i
th
 order statistic is denoted X(i). It is 

the i
th
 smallest of the sample values X1, X2, …,XN.  If one has a set of ordered sample points X(1), 

X(2), … X(N), the ECDF is defined as FN , where 

 
N

i
 ) (XF (i)N =  



11 

This is the proportion of the sample values that are less than or equal to X(i).   

 

The probability plot is a graph of the sample probability )( (i)N XF vs. the fitted distribution 

probability )( (i)XF .  If these values are close, then the P-P plot will be approximately linear with 

an intercept of zero and a slope of 1.   If the probabilities are plotted against each other, it is called a 

P-P plot.  If the quantiles are plotted against each other, it is called a Q-Q plot.  Sometimes the 

probability is plotted against the quantile as shown in Figure 1.  In this case, the sample values fall 

very close to the line, indicating the data likely follows a normal distribution. 
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Figure 1.  Example  P-Q plot for the Normal Distribution 

 

Formal Statistical Tests 

There are a number of formal statistical tests, called “goodness-of-fit” tests.  These tests are based 

on various types of hypotheses. The null hypothesis is:  

Ho:  The sample data X1, X2, …,XN are independently, identically distributed 

random variables with the distribution function F.  

 

In practice, the hypotheses usually take the form:  is a test statistic calculated from the sample data 

less than or greater than some threshold value, based on the distribution of the test statistic.  If the 

test statistic calculated from the data is less than (or greater than, depending on the test), we can 

then accept the null hypothesis.  However, Law and Kelton [1991] make an important point:  failure 

to reject the null hypothesis should NOT be interpreted as accepting the null hypothesis is true. 

Some of these tests are not powerful for small sample sizes, and some tests are not very sensitive to 

small changes between the data and the fitted distribution.  Thus, the tests are more useful for 
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detecting gross differences to a fitted distribution.  Note also that most of these tests can be adapted 

for various distribution functions but some are specific to a particular distribution function.  Finally, 

although most of the tests can be applied to a general distribution function, in practice, most of the 

statistical software packages have only implemented the tests for common distribution functions 

such as the normal distribution.   

Chi-Square Tests 

The oldest goodness-of-fit hypothesis test is the Chi-Square test.  It involves a comparison between 

an empirical histogram based on the sample data and the density of the fitted distribution (the 

underlying distribution to which we are comparing).   To calculate the Chi-Square test statistic, one 

divides the entire range of the fitted distribution into k intervals, for example [a0,a1), [a1,a2), ….[ak-

1,ak).  If Nj = the number of sample X values in the j
th
 interval [aj-1,aj), then the test statistic is:  

 

∑
=

−
=

k

j j

jj

Np

NpN

1

2

2
)(

χ  

Where N is the total number of samples and pj is the expected proportion of the sample values that 

should fall in the j
th
 interval:  ∫

−

=

j

j

a

a

j dXXfp

1

)( .   Thus, the test statistic measures the normalized 

squared differences between the number we expect in each bin according to an underlying 

distribution, and how many sample values there actually are.  The 2χ test statistic should be small if 

the fit is good.   The decision is to reject the null hypothesis if 2

1,1

2

αχχ −−> k , where k is the number 

of bins, and 2

1,1 αχ −−k  is the upper 1-α critical value for a chi-square distribution with k-1 degrees of 

freedom.  The critical value changes slightly if one estimates the parameters of the distribution from 

the data, which reduces the degrees of freedom.   

 

The difficulty with implementing a 2χ test is selecting the number and the size of the intervals.   

The test is sensitive to the choice of bins.  Some approaches recommend choosing the intervals so 

that they are equiprobable:  p1= p2 = … pk.   Additionally, to ensure validity of the test, there should 

be no intervals where the expected number in that interval is less than five.  That is, jNp j ∀≥ 5 .  It 

is also recommended that the number of bins be at least three.   This test works best with a large 

number of samples, and the test statistic is only valid at level α asymptotically as N�∞.   

 

Kolmogorov-Smirnov 

The Kolmogorov-Smirnov (K-S) test is used to detect if a sample population comes from a 

certain distribution.  The K-S test is based on the empirical distribution function (ECDF) which 

was defined above.  Recall that for a set of data, X1, X2, …,XN, the i
th
 order statistic is denoted 

X(i). It is the i
th
 smallest of the sample values X1, X2, …,XN.   
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The K-S test statistic is based on the difference between the empirical CDF and the “true” CDF.  

The K-S test statistic, D, is defined as :  









−

≤≤
= )(,

1
)(

)1(

max
D (i)(i) XF

N

i

N

i-
-XF

Ni
. 

 

In this formula, )( (i)XF  is the theoretical cumulative distribution function (CDF) of the distribution 

against which we are trying to test.  This distribution must be a continuous distribution, and its 

parameters must be specified and not estimated from the data.   Note that the distribution of the K-S 

test statistic itself does not depend on the underlying cumulative distribution function being tested. 

Another advantage is that it is an exact test for any number of points N, whereas the Chi-square test 

is valid in only asymptotically.  The K-S test eliminates the need for binning data and specifying 

intervals as in the chi-square test.  However, the K-S test does have limitations.  It is mainly used 

for continuous distributions and is not easily applied to discrete distributions.  It tends to be more 

sensitive near the center of the distribution than at the tails.  And the distribution must be fully 

specified (e.g., the location, scale, and where appropriate, shape parameters of the distribution must 

be given).  These parameters should NOT be estimated from the data.  In recent years, the K-S test 

has been extended to allow for estimation of the parameters from the data.  It was not possible to 

tell from the Minitab documentation how they are correcting the K-S test, since they are estimating 

the parameters.   

 

Anderson-Darling test 

One drawback to the K-S test is that it gives the same weight to the difference )(-)( XFXFN  for 

every value of X.  However, many distributions differ primarily in the tails.  The Anderson-Darling 

test is designed to detect discrepancy in the tails and has higher power than the K-S test for many 

distributions.  

The A-D test statistic 2

nA is defined as:  

dXXfXXFXFNA N )()()](-)([ 22

n ψ∫
∞

∞−
=  

Where )(Xψ is the weight function 
))(1)((

1
)(

XFXF
X

−
=ψ .  This means that 2

nA  is a weighted 

average of the squared differences 
2

)(-)( XFXFN  and the weights are largest for the tails of F(X), 

where F(X) is close to zero or one.  The form of the test is to reject the null hypothesis if 2

nA  

exceeds some critical value that is a function of N and α.  Tables of these critical values have been 

compiled for a few distributions, including the normal distribution. 

 

Shapiro-Wilk/Ryan-Joiner 

The Shapiro-Wilk and Ryan-Joiner test are very similar, and based on the correlation one would 

expect between the sample data set and the data one would expect if the underlying distribution 
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were normal.  The test statistic, W, is constructed so that small values of W are evidence of 

departure from normality.  The test statistic is:  

∑

∑

=

=

−

=
N

i

i

N

i

ii

XX

Xa

W

1

2

1

2

)(

)(

)(

 

where ai are constants generated from the moments of the order statistics. 

 

Statistical Software 

Minitab offers three tests for normality:  the Anderson-Darling test, the Ryan-Joiner test, and the 

Kolmogorov-Smirnov test.   Minitab does not offer a test for uniform distributions, however it is 

possible to construct a Chi-square test statistic from the data and test that.  JMP uses a 

Kolmogorov-Smirnov test to detect normality when the mean and variance of the fitted distribution 

are known; it uses a Shapiro-Wilks test when the mean and variance of the underlying distribution 

are not known.  JMP also does not specifically have a test constructed for the uniform distribution.  

Both JMP and Minitab offer a variety of probability and quantile plots, as well as summary 

statistics about the sample data. 

 

 

4.  The Normal Distribution 

The LHS software implemented in DAKOTA provides the user with two different methods for 

sampling from the normal distribution.  The normal distribution is defined by the density function 

f x  =  
1

 e      -   <  x <  ,
x

( )
( )( )

σ π

µ

σ

2

2

2
2

−
−

∞ ∞  

where the distribution mean and variance are µ and σ
2
, respectively.  The standard deviation of the 

distribution, which is required by LHS as an input parameter for several normal distribution 

sampling methods, is denoted by σ.  The first sampling method for the normal distribution samples 

over all quantiles.  The bounded normal method samples a normal distribution that is bounded. 

 

For the purposes of the V&V analysis of the regular normal distribution in LHS, three runs of the 

LHS code were performed in DAKOTA.  Each run involved 2 normally distributed, uncorrelated 

random variables.  Each random variable was chosen from the standard normal distribution, with 

zero mean and standard deviation of one. The first run had 100 samples, the second run had 1000 

samples, and the third run had 10,000 samples.  The sections below provide results of testing with 

these sample data sets.  



15 

Summary Statistics:  N = 100 

For the 100 sample data sets, here are the results from Minitab:  
 

Descriptive Statistics: 1n100 

 
Variable    N    Mean   SE Mean  StDev    Minimum   Q1    Median     Q3 Maximum 

TF1n      100   -0.005  0.101    1.008   -2.887  -0.680   0.005   0.676   2.473 

 

  

Descriptive Statistics: 2n100  

 
Variable    N    Mean   SE Mean  StDev    Minimum     Q1    Median     Q3   Maximum 

TF2n      100    0.006  0.102    1.017   -2.655    -0.691  -0.000   0.670  3.010 

 

For a N(0,1) distribution, we expect the sample mean and standard deviation to be approximately 

zero and one.  For the two samples we took with N=100, we see this.  We also expect the 25
th
 and 

75
th
 percentiles to be -0.6745 and +0.6745 respectively.  These percentiles are approximately 

correct.  Finally, note that the maximum and minimum vary quite a bit.  

 

To test if the mean of the sample data truly is zero, based on the assumption that the underlying 

distribution is normal, we can use a t-test, where: 

Ho:  µ = 0; HA:  µ ≠ 0.   

 

The hypothesis test is to accept Ho at significance level α if )1,
2

1(* −−≤ ntt α .  For data set 

1n100, we have:  9842.1)1,
2

1(0495.0
101.0

005.* =−−≤=
−

= ntt α .  Thus, we accept the null 

hypothesis that the mean is equal to zero.  The same conclusion can be made for data set 2n100.  

 

To test if the variance of the sample data is one, based on the assumption that the underlying 

distribution is normal, we can use a Chi-square test, where: 

1:,1: 22 ≠= σσ Ao HH  

The hypothesis test is to accept Ho at significance level α if 

)1,
2

1(
)1(

)1,
2

( 2

2

2
2 −−≤

−
≤− n

sn
n

o

αχ
σ

αχ  where s
2
 is the sample variance.  For data set 1n100, 

we have: )1,
2

1(42.12859.100336.73)1,
2

( 22 −−=≤≤=− nn αχαχ  and thus we can accept 

the null hypothesis that the variance is equal to one.  The same conclusion can be made for 2n100. 

 

 

Graphical Comparisons:  N = 100 

The graphical comparisons with a quantile plot of the sample data (red points) vs. a normal 

distribution (blue line) in Figures 2 and 3 show the agreement is very good for both sample sets:  



16 

1n100

P
e
rc
e
n
t

3210-1-2-3

99.9

99

95

90

80

70

60

50

40

30

20

10

5

1

0.1

Probability Plot of 1n100
Normal 

 
Figure 2.  P-Q plot of the 1

st
 Normal LHS sample, with sample size = 100 
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Figure 3.  P-Q plot of the 2

nd
 Normal LHS sample, with sample size = 100 
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Formal Tests: N = 100 

The Anderson-Darling test statistic as calculated in Minitab for 1n100 is 0.025, with a p-value of 

1.00.  The interpretation of this is that if the p-value is less than the desired significance level α, 

then one must reject the null hypothesis.  Otherwise, the null hypothesis is accepted.  In this case, 

for α = 0.05, we accept the null hypothesis that the data do follow a normal distribution.  We also 

accept the Anderson-Darling test for the second data set of 100 points, 2n100, with a test statistic of 

0.034.  

 

The Kolmogorov-Smirnov test statistic as calculated in Minitab for 1n100 is 0.013.  Minitab only 

gives a p-value for this test, and specifically the output is p> 0.15, meaning that p-value is greater 

than 0.15.  Since we usually have an alpha value of 0.05 or 0.10, then we would accept the null 

hypothesis that the data do follow a normal distribution according to this test.  The KS test statistic 

for 2n100 is 0.015.  The p-value for the second data set was also p>0.15.  

 

The Ryan-Joiner test resulted in accepting the null hypothesis for both data sets, but at a weaker 

level than the above two test.  The Ryan-Joiner test statistic for both data sets was the same, a value 

of 0.999.  The p-value in both cases was p>0.10.  Thus, for an alpha value of 0.05, we would still 

accept the null hypothesis.  

 

The results from JMP are shown in Figure 4.  JMP produces much of the same output as Minitab 

does, in a different format.  A histogram of each of the 2 samples is shown in green, with a 

probability density function for the “true” normal(0,1) overlaid in red.  The quantile-quantile plot is 

shown at the top.  The quantiles, moments, and confidence intervals for the mean and standard 

deviation are listed.  Finally, a Kolmogorov-Smirnov goodness-of-fit test is performed.  Note that 

the K-S test statistic is slightly different than that calculated in Minitab.  In Minitab, the K-S test 

statistic is 0.013 and 0.015 for samples 1 and 2, respectively, while in JMP it is .00999 and 

0.00998.  This difference is due to the fact that Minitab is using the sample mean and standard 

deviation, while JMP is using the specified (0,1) mean and standard deviation.  The difference may 

also be due to slight differences in the way people calculate the empirical distribution function:  

some approaches normalize it.  Note that the last section in JMP states that the probability that the 

test statistic is greater than D is 25% in both cases.  This means that the probability of obtaining a 

greater test-statistic value D by chance alone is 25%.  To see if D is significant, we can use the 

approximation given in [Law and Kelton]:  reject Ho if:  α−>







++ 1

11.0
12.0 cD

N
N , where the 

value of c1-α is 1.38 when α = 0.05.  In the case of sample 1, this test reduces to:   10.131*0.009998 

= 0.1013 > 1.38 which is not true, so we do not reject the null hypothesis that this data comes from 

a normal distribution. 
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                        Figure 4.  Summary Statistics, Normal Distribution, N = 100
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Summary Statistics:  N = 1000 

For the 1000 sample data sets, here are the results from Minitab:  
 

Descriptive Statistics: 1n1000, 2n1000  

 
Variable  N    Mean     SE Mean   StDev   Minimum       Q1   Median      Q3  Maximum 

1n1000   1000  -0.00047  0.0316    1.0005  -3.5476  -0.6748  -0.0001  0.6760  3.0986  

2n1000   1000  -0.00004  0.0316    1.0003  -3.2397  -0.6751   0.0001  0.6747  3.2419 

 

We see that the mean and standard deviation are closer to (0,1) than the values obtained from the 

100 point sample sets.  Also, the 25
th
 and 75

th
 percentiles are very close to the expected values of   

-0.6745 and +0.6745 respectively.   

 

As before, we use a t-test to test if the mean is zero:  Ho:  µ = 0; HA:  µ ≠ 0.   

 

The hypothesis test is to accept Ho at significance level α if )1,
2

1(* −−≤ ntt α .  For data set 

1n1000, we have:  9842.1)1,
2

1(0149.0
0316.0

00047.* =−−≤=
−

= ntt α .  Thus, we accept the null 

hypothesis that the mean is equal to zero.  The same conclusion can be made for data set 2n1000.  

 

To test if the variance of the sample data is one, based on the assumption that the underlying 

distribution is normal, we can use a Chi-square test, where: 1:,1: 22 ≠= σσ Ao HH . 

 

The hypothesis test is to accept Ho at significance level α if 

)1,
2

1(
)1(

)1,
2

( 2

2

2
2 −−≤

−
≤− n

sn
n

o

αχ
σ

αχ  where s
2
 is the sample variance.  For data set 

1n1000, we have: )1,
2

1(42.128099.99336.73)1,
2

( 22 −−=≤≤=− nn αχαχ  and thus we can 

accept the null hypothesis that the variance is equal to one.  The same conclusion can be made for 

2n1000. 

 

 

Graphical Comparisons:  N = 1000 

The graphical comparisons with a quantile plot of the sample data (red points) vs. a normal 

distribution (blue line) in Figures 5 and 6 show the agreement is very good for both sample sets:  
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Figure 5.  P-Q plot of the 1

st
 Normal LHS sample, with sample size = 1000 
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Figure 6.  P-Q plot of the 1

st
 Normal LHS sample, with sample size = 1000 
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Formal Tests: N = 1000 

The Anderson-Darling test statistic as calculated in Minitab for 1n1000 is 0.004, with a p-value of 

1.00.  The interpretation of this is that if the p-value is less than the desired significance level α, 

then one must reject the null hypothesis.  Otherwise, the null hypothesis is accepted.  In this case, 

for α = 0.05, we accept the null hypothesis that the data do follow a normal distribution.  We also 

accept the Anderson-Darling test for the second data set of 1000 points, 2n1000, with a A-D test 

statistic of 0.003 with a p-value of 1.00.  

 

The Kolmogorov-Smirnov test statistic as calculated in Minitab for 1n1000 is 0.001.  Minitab only 

gives a p-value for this test, and specifically the output is p> 0.15, meaning that p-value is greater 

than 0.15.  Since α = 0.05, then we would accept the null hypothesis that the data do follow a 

normal distribution according to this test.  The KS test statistic for 2n1000 is also 0.001, with 

p>0.15.  

 

The Ryan-Joiner test resulted in accepting the null hypothesis for both data sets.  The Ryan-Joiner 

test statistic for both data sets was the same, a value of 1.0.  The p-value in both cases was p>0.10.  

Thus, for an alpha value of 0.05, we would still accept the null hypothesis.  

 

The results from JMP are shown in Figure 7.  JMP produces much of the same output as Minitab 

does, in a different format.  A histogram of each of the 2 samples is shown in green, with a 

probability density function for the “true” normal(0,1) overlaid in red.  The quantile-quantile plot is 

shown at the top.  The quantiles, moments, and confidence intervals for the mean and standard 

deviation are listed.  Finally, a Kolmogorov-Smirnov goodness-of-fit test is performed.  In this case, 

the K-S statistic is the same as that calculated in Minitab.  

To see if D is significant, we can use the approximation given in [Law and Kelton]:  reject Ho if:  

α−>







++ 1

11.0
12.0 cD

N
N , where the value of c1-α is 1.38 when α = 0.05.  For both sample sets 

1 and 2, we do not reject the null hypothesis that this data comes from a normal distribution. 
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Figure 7.  Summary Statistics, Normal Distribution, N = 1000 
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Summary Statistics:  N = 10000 

For the 10000 sample data sets, here are the results from Minitab:  
 

Descriptive Statistics: 1n10000, 2n10000  

 
Variable    N    Mean       SE Mean   StDev  Minimum       Q1   Median     Q3  Maximum 

1n10000  10000  -0.0000421   0.0100  1.0001  -4.1141  -0.6745   0.0001  0.6745  3.8440 

2n10000  10000  -0.0000125   0.0100  1.0000  -3.8754  -0.6746  -0.0000  0.6745  3.7556 

 

 

We see that the mean and standard deviations are closer to (0,1) than the values obtained from the 

1000 point sample sets, as expected.  Also, the 25
th
 and 75

th
 percentiles are very close to the 

expected values of  -0.6745 and +0.6745 respectively.   

 

As before, we use a t-test to test if the mean is zero:  Ho:  µ = 0; HA:  µ ≠ 0.   

 

The hypothesis test is to accept Ho at significance level α if )1,
2

1(* −−≤ ntt α .  For data set 

1n10000, we have:  9842.1)1,
2

1(00421.0
01.0

0000421.* =−−≤=
−

= ntt α .  Thus, we accept the 

null hypothesis that the mean is equal to zero.  The same conclusion can be made for data set 

2n10000.  

 

To test if the variance of the sample data is one, based on the assumption that the underlying 

distribution is normal, we can use a Chi-square test, where: 1:,1: 22 ≠= σσ Ao HH . 

 

The hypothesis test is to accept Ho at significance level α if 

)1,
2

1(
)1(

)1,
2

( 2

2

2
2 −−≤

−
≤− n

sn
n

o

αχ
σ

αχ  where s
2
 is the sample variance.  For data set 

1n10000, we have: )1,
2

1(42.12802.99336.73)1,
2

( 22 −−=≤≤=− nn αχαχ  and thus we can 

accept the null hypothesis that the variance is equal to one.  The same conclusion can be made for 

2n10000. 

 

 

Graphical Comparisons:  N = 10000 

The graphical comparisons with a quantile plot of the sample data (red points) vs. a normal 

distribution (blue line) in Figures 8 and 9 show the agreement is very good for both sample sets:  



24 

1n10000

P
e
rc
e
n
t

43210-1-2-3-4-5

99.99

99

95

80

50

20

5

1

0.01

Probability Plot of 1n10000
Normal 

 
Figure 8.  P-Q plot of the 1

st
 Normal LHS sample, with sample size = 10000 
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Figure 9.  P-Q plot of the 1

st
 Normal LHS sample, with sample size = 10000 
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Formal Tests: N = 10000 

The Anderson-Darling test statistic as calculated in Minitab for 1n10000 is 0.000, with a p-value of 

1.00.  The interpretation of this is that if the p-value is less than the desired significance level α, 

then one must reject the null hypothesis.  Otherwise, the null hypothesis is accepted.  In this case, 

for α = 0.05, we accept the null hypothesis that the data do follow a normal distribution.  We also 

accept the Anderson-Darling test for the second data set of 10000 points, 2n10000, with a A-D test 

statistic of 0.000 with a p-value of 1.00.  

 

The Kolmogorov-Smirnov test statistic as calculated in Minitab for 1n10000 and 2n10000 is zero.  

Minitab only gives a p-value for this test, and specifically the output for both sample sets is p> 0.15, 

meaning that p-value is greater than 0.15.  Since α = 0.05, then we would accept the null hypothesis 

that the data do follow a normal distribution according to this test.   

 

The Ryan-Joiner test resulted in accepting the null hypothesis for both data sets.  The Ryan-Joiner 

test statistic for both data sets was the same, a value of 1.0.  The p-value in both cases was p>0.10.  

Thus, for an alpha value of 0.05, we would still accept the null hypothesis.  

 

The results from JMP are shown below in Figure 10.  Note that with 10000 samples, the histogram 

(in green) is extremely close to the true distribution, when compared with the true normal density 

(in red).  Also note that the confidence limits about the mean and standard deviation are very tight, 

as to be expected with such a large number of samples.  However, the true mean and standard 

deviation lie within the 95% confidence intervals.  Finally, the KS test statistic is very small, 0.0001 

for both samples.  Again, using the approximation to see if D is significant, we would reject Ho if:  

α−>







++ 1

11.0
12.0 cD

N
N , where the value of c1-α is 1.38 when α = 0.05.  For both sample sets 

1 and 2, we do not reject the null hypothesis that this data comes from a normal distribution. 
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Figure 10.  Summary Statistics, Normal Distribution, N = 10000 
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Table 1 summarizes the results of testing the normal distribution, showing that in all cases we 

cannot reject the hypothesis of the underlying distribution being a N(0,1) distribution:  

 

 

Test Statistic for Normal 

Distribution 

Test Statistic Value Reject null  

hypothesis? 

N = 100 Sample 1 Sample 2  

Anderson-Darling 0.025  0.034 NO 

Kolmogorov-Smirnov 0.013 0.015 NO 

Ryan-Joiner 0.999 0.999 NO 

N = 1000    

Anderson-Darling 0.004 0.003 NO 

Kolmogorov-Smirnov 0.001 0.001 NO 

Ryan-Joiner 1.0 1.0 NO 

N=10000    

Anderson-Darling 0 0 NO 

Kolmogorov-Smirnov 0.0001 0.0001 NO 

Ryan-Joiner 1.0 1.0 NO 

Table 1.  Summary Statistics, Normal Distribution 
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5.  The Lognormal Distribution 

The LHS software implemented in DAKOTA provides the user with two different methods for 

sampling from the lognormal distribution.   The lognormal distribution is a distribution whose 

logarithm is described by a normal distribution. The lognormal distribution is defined by the density 

function: 

, < x <  -     
2

)  - x (
 - 

2x

1
 = f(x)

2

2

N

N

∞∞








σ

µ

πσ

ln
exp  

where the mean and variance of the underlying normal distribution are µΝ and σ Ν
 2
, respectively.  In 

DAKOTA, the user is required to enter the mean and either the standard deviation or error factor for 

the lognormal distribution.  These are related to the underlying normal distribution parameters by 

the following formulas:  

( )2
NNeLN

σµµ +
= , )0.1(

2222 −=
+ NNN eeLN

σσµσ ,
( )NeLN

σε *645.1
=  

 

Where LNµ  is the mean of the lognormal distribution, 
2

LNσ is the variance, and LNε  is the “error 

factor” which is defined as the ratio of the 95
th
 percentile to the median of the lognormal 

distribution.  

 

For the purposes of the V&V analysis of the lognormal distribution in LHS, three runs of the LHS 

code were performed in DAKOTA.  Each run involved 2 lognormally distributed, uncorrelated 

random variables.  Each random variable was chosen so that the underlying normal distribution was 

the standard normal distribution, with zero mean and standard deviation of one.  This translates to a 

lognormal mean of 1.647821, and a lognormal standard deviation of 2.161197.  The DAKOTA 

lognormal input specification using the error factor instead of the standard deviation was also tested 

and produced nearly identical results to the samples generated with the standard deviation specified. 

 We present only the results using the standard deviation specification.  As with the normal 

distribution, the first run had 100 samples, the second run had 1000 samples, and the third run had 

10,000 samples.  The sections below provide results of testing with these sample data sets.  

 

Note that the results here are presented a little differently than the results of the normal distribution 

presented in Section 3.  For each set of samples, we present both the raw data (the lognormal 

distribution) and then we take the log of the samples and present the underlying normal distribution 

based on the sample data.  The formal statistical tests that are specific to the normal distribution can 

then be applied to the log-transformed data.  
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Summary Statistics and Graphical Comparison:  N = 100 

Figure 11 shows the raw data based on the samples generated by LHS, and Figure 12 shows the 

log-transformed data.  There is one very important point to remember when examining this data.  

The lognormal distribution has a long tail.  In the data we generated with a lognormal mean of 

1.648 and a lognormal standard deviation of 2.161, the 99
th
 percentile value of this distribution is 

10.42.  This means that in 100 samples generated by LHS, only one will lie in the bin from [10.42, 

∞] because of the way the stratification is done.  Thus, in these first two sample sets, we see a large 

difference in the maximum values:  Sample set 1ln100 had a maximum value of 11.856, while 

sample set 2ln100 had a maximum value of  20.297.  The difference in the maximum values greatly 

affects the variance and standard deviation of the sample sets.  The true value for the median of this 

distribution is 1.0.  Both samples have medians very close to this.  The true 75
th
 percentile value is 

1.963.  Both samples are close to this, and likewise with the 90
th
 percentile which has a true value 

of 3.602.  However, statistics of these 100 sample sets are not as good at matching the true 97.5
th
 

percentile, which is 7.099, and the sample means and standard deviations are not very close to what 

was specified in the input specification (a lognormal mean of 1.647821, and a lognormal standard 

deviation of 2.161197).    

 

The inability of the lognormal samples to match the specified means and standard deviations with 

100 samples should not be of concern.  With only 1% of the distribution lying in [10.42, ∞], there 

will be only one LHS sample taken in this interval and the location of that particular sample will 

strongly affect the mean and standard deviation.  This does not mean that the sample generated is 

not lognormal:  when we transform to normal space and do the formal statistical tests, we see that 

we cannot reject the hypothesis that the underlying distribution is normal.  Furthermore, as we take 

more samples, we see these statistics converge to their true estimates.  This result is due to the fact 

that we are sampling a very long-tailed distribution sparsely, and highlights the limitations of small 

sample numbers if one wants to estimate tail probabilities accurately.  

 

Finally, note a few things:  The Kolmogorov-Smirnov-Lillifors test shows that we cannot reject the 

null hypothesis of the data being lognormal.  Also, note that the 95% confidence intervals around 

the means and standard deviations DO capture the true values for sample 1ln100.  The true mean is 

captured in the second sample, 2ln100, but the standard deviation is not.  However, these 

confidence intervals are based on the assumption that the underlying distribution is normal.  Thus, 

they should not strictly be used in the case where we have a clearly non-normal distribution, but we 

can examine these confidence intervals as a sanity check. 
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Figure 11.  Summary Statistics, Lognormal Distribution, N = 100 

 

 

Figure 12 shows the log-transformed data for the 100 sample sets:  
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Figure 12.  Summary Statistics, Log-transformed Lognormal Distribution, N = 100 

 

 

Note that the log transform of the lognormal data fits a normal distribution very well.  In this case, 

we can use the confidence intervals because they are valid, and the true values for the mean and 

standard deviation (0,1) do fall within the confidence intervals in both sample sets.  The quantile 

plots and the KSL test verify that we cannot reject the hypothesis that the underlying samples come 

from a normal distribution. 
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Summary Statistics and Graphical Comparison:  N = 1000 

We perform a similar transformation for N=1000:  first we look at the raw data, then log-transform 

it.  The raw data has a lognormal distribution shape, as shown in Figure 13.  Note that in these 

samples, the maximum value is in the mid-twenties.  The 99.5
th
 percentile of the true distribution is 

13.142. For 1000 samples, we expect 5 samples to lie above 13.142.  Sample set 1ln1000 and 

sample set 2ln2000 both have exactly 5 samples above this value.  The 97.5
th
 percentile estimate is 

more accurate than that generate in the 100-point sample sets, as expected.  Most of the other 

percentiles are more accurate as well.  The standard deviation estimates are closer to 2.161, as 

expected.  We cannot reject the null hypothesis that these data sets come from a lognormal 

distribution, based on the KSL test. 

 

 
 Figure 13.  Summary Statistics, Lognormal Distribution, N = 1000 
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The log-transform of the 1000 point data sets follows a normal distribution very closely, as shown 

below in Figure 14:  

 

 
Figure 14.  Summary Statistics, Log-transformed Lognormal Distribution, N = 1000 
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Summary Statistics and Graphical Comparison:  N = 10000 

We perform a similar transformation for N=10000:  first we look at the raw data, then log-

transform it.  The raw data has a lognormal distribution shape, as shown in Figure 15.  Note that in 

these samples, the maximum value is in the mid-forties.  Again, this is an example of getting better 

samples in the tails for long-tailed distributions as you increase the number of samples.  The 99.95
th
 

percentile of the true distribution is 26.86. For 10000 samples, we expect 5 samples to lie above 

26.86.  Sample set 1ln10000 and sample set 2ln20000 both have exactly 5 samples above this 

value.  The 97.5
th
 percentile estimate is more accurate than that generate in the 1000-point sample 

sets, as expected.  Most of the other percentiles are more accurate as well.  The standard deviation 

estimates are closer to 2.161, as expected.  We cannot reject the null hypothesis that these data sets 

come from a lognormal distribution, based on the KSL test.  Note that as the number of samples 

increases from 100 to 10000, we see the means and standard deviations from the sample sets 

converging to the true values as shown in Table 2:  

 
Sample Size Case 1 Case 2 True Mean

100 1.616 1.713 1.648

1000 1.641 1.646 1.648

10000 1.647 1.647 1.648

True Std. Dev.

100 1.875 2.474 2.161

1000 2.054 2.102 2.161

10000 2.135 2.133 2.161  
 

Table 2.  Summary, Lognormal Distribution 
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Figure 15.  Summary Statistics, Lognormal Distribution, N = 10000 

 

 

Figure 16 shows the log-transform for the 10000-point data sets.  Note that these data sets strongly 

support the hypothesis that the underlying distribution is normal. 
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Figure 16.  Summary Statistics, Log-transformed Lognormal Distribution, N = 10000 
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6.  The Uniform Distribution 

The LHS software implemented in DAKOTA provides the user with one method for sampling from 

the uniform distribution.  The uniform distribution is defined by the density function 

LU    
LU

 = f(x) >
−

1
 

where U and L denote the uppder and lower bounds of the uniform distribution, respectively.  The 

mean of the uniform distribution is given by: 
2

LU + , and the standard deviation is given by: 

12

)( 2LU + .   

 

For the purposes of the V&V analysis of the uniform distribution in LHS, three runs of the LHS 

code were performed in DAKOTA.  Each run involved 2 uniformly distributed, uncorrelated 

random variables.  Each random variable was chosen from the uniform distribution with a lower 

bound of zero and an upper bound of one.  The mean of this distribution is 0.5, and the standard 

deviation is 0.2887.  As before, the first run had 100 samples, the second run had 1000 samples, 

and the third run had 10,000 samples.  The sections below provide results of testing with these 

sample data sets.  

 

Summary Statistics and Graphical Comparison:  N = 100 

Figure 17 shows that the samples generated for a uniform with bounds [0,1] do follow a uniform 

distribution.  The mean is extremely close to 0.50 for both 1u100 and 2u100.  The standard 

deviation is also close to 0.2887 in both cases.  The histogram shows that there are the same 

number of points (10) in each bin [0,0.1) [0.1,0.2) etc.  The stem-and-leaf graph is a little 

misleading because of the way JMP does its rounding.  For example, in case 2, the largest value on 

the stem and leaf graph looks like there is a sample at 1.00.  There is not a sample value of 1.00, but 

instead, the largest value of this sample, 0.9987, is rounded up to 1.0 for the stem and leaf plot. 
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Figure 17.  Summary Statistics, Uniform Distribution, N = 100 

 

Formal statistical tests:  N = 100 

Note that it is possible to apply some of the formal goodness-of-fit hypothesis testing to uniform 

distributions.  However, the vast majority of the tests supported in commercial software are 

specifically designed for testing if a distribution is normal.  Neither Minitab nor JMP directly 
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supports testing for uniformity.  However, we developed the test statistics based on the sample 

values and performed the analysis.   

 

Recall that the Chi-square test measures the difference between the expected proportion of samples 

that will fall in the j
th
 interval, pj, and the actual number of samples that falls in the jth interval, Nj:  
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where N is the total number of samples.  

 

Because LHS is stratified, this test statistic will be zero.  For example, if we divide the 100 samples 

up into 10 bins, we expect that 10 samples will fall within the first bin [0, 0.1), 10 samples will fall 

into the second bin [0.1, 0.2), etc.  The results from these two LHS samples show that there are 

indeed exactly 10 samples in the first bin, 10 samples in the second bin, etc.  

 

The results of the 2χ test strongly support that the null hypothesis of a uniform distribution cannot 

be rejected.  Below is the Minitab output for this Chi-square test.  Note that the p-value is 1.0, 

meaning that the probability that one would obtain these results with a uniform distribution is 

essentially 1.0. 

 
 

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: 1u100 

 
                          Test            Contribution 

Category  Observed  Proportion  Expected     to Chi-Sq 

1               10         0.1        10             0 

2               10         0.1        10             0 

3               10         0.1        10             0 

4               10         0.1        10             0 

5               10         0.1        10             0 

6               10         0.1        10             0 

7               10         0.1        10             0 

8               10         0.1        10             0 

9               10         0.1        10             0 

10              10         0.1        10             0 

 

 

  N  DF  Chi-Sq  P-Value 

100   9       0    1.000 

 

Because 2χ test statistic will always be zero for uniform samples generated with LHS, pointing to 

accepting the null hypothesis, I implemented one other test statistic as an additional verification 

check. 

 

Recall that the Kolmogorov-Smirnov test statistic, D, is given by:  
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Where one will reject the null hypothesis if: α−>







++ 1

11.0
12.0 cD

N
N , where the value of c1-α 

is 1.38 when α = 0.05.   For data set 1u100, D = 0.00999 and 1013.
11.0

12.0 =







++ D

N
N , so 

we cannot reject the null hypothesis of a uniform distribution.  For data set 2u100, D = 0.00997, 

and 101.
11.0

12.0 =







++ D

N
N 0 and again we cannot reject the null hypothesis.  

Summary Statistics and Graphical Comparison:  N = 1000 

Figure 18 shows that the samples generated for a uniform with bounds [0,1] do follow a uniform 

distribution.  The mean is extremely close to 0.50 for both 1u1000 and 2u1000.  The standard 

deviation is also close to 0.2887 in both cases.  The histogram shows that there are the same 

number of points (100) in each bin [0,0.1) [0.1,0.2) etc.   The stem-and-leaf plot was not printed 

because it was too large with this many points at the resolution JMP output. 

 

 
 

Figure 18.  Summary Statistics, Uniform Distribution, N = 1000 
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Formal statistical testing is not very useful in the case of the Chi-square test, since the Chi-square 

test statistics is zero and again we accept the null hypothesis that the data come from a uniform 

distribution.  For the K-S test, the test statistic D is 0.001 for both samples.   For both data sets 

1u1000 and 2u1000 , D = 0.001and 0317.
11.0

12.0 =







++ D

N
N , so we cannot reject the null 

hypothesis of a uniform distribution.   

 

Summary Statistics and Graphical Comparison:  N = 10000 

Figure 19 shows that the samples generated for a uniform with bounds [0,1] do follow a uniform 

distribution.  The mean is extremely close to 0.50 for both 1u10000 and 2u10000.  The standard 

deviation is also close to 0.2887 in both cases.  The histogram shows that there are the same 

number of points (100) in each bin [0,0.1) [0.1,0.2) etc.    

 

 
Figure 19.  Summary Statistics, Uniform Distribution, N = 100 
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Formal statistical testing is again not very useful in the case of the Chi-square test, since the Chi-

square test statistics is zero and again we accept the null hypothesis that the data come from a 

uniform distribution.  For the K-S test, the test statistic D is 0.0001 for both samples.   For both data 

sets 1u1000 and 2u1000 , D = 0.001and 010.
11.0

12.0 =







++ D

N
N , so we cannot reject the null 

hypothesis of a uniform distribution.   
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7. Large Scale Tests 

The test results presented above for normal, lognormal, and uniform distributions were small tests:  

only 2 variables of each distribution type were sampled.  To mimic the needs of the ASC 

milestones and also to ensure more robustness in our verification tests, we ran some larger 

verification tests.  The test results are shown in Table 3. 

 

The test set-up is as follows:  we produced joint samples of 30 or 50 variables simultaneously, with 

sample sizes ranging from 50 to 10000 samples.  This means that we produced a joint sample for 30 

normal random variables, for example, and not 30 normal random variables each sampled 

individually.  Often, in Monte Carlo sampling, there are fairly large correlations between input 

variable sample values (e.g., variable 16 may be correlated with variable 23 with a correlation 

coefficient of .4 or even higher).  If these random variables are independent which is often the case, 

one would NOT like to have high correlation values in the sample data.  We used the restricted 

pairing method developed by Iman and Conover to specify that zero or near-zero correlation be  

induced between the sample variable values.  The restricted pairing method worked extremely well. 

For example, in the sample set of 10000 samples, the correlations between various pairs of input 

variables were on the order of 10
-4
.    

 

The testing showed that all of the verification tests for normal, lognormal, and uniform distributions 

passed the Kolmogorov-Smirnov test.  That is, we cannot reject the hypothesis that these 30 or 50 

random variables generated each come from a normal, lognormal, or uniform distribution, 

respectively.   The test results also show that the summary statistics converge as the sample size 

increases, which is what we expect.  As sample size goes from 50 to 10,000, we see that the average 

sample mean and average sample standard deviation approach the true mean and standard deviation 

for each of the three distribution types. 

 

 

 

 

Table 3.  Test Results for Large Scale Verification Tests 

Number of Average True

Random Vars Sample Size K-S Test Average mean True Mean Std.Deviation Std. Deviation

Normal 30 50 All pass 0.000149 0 1.016044 1

 50 100 All pass -0.000310 0 1.008588 1

50 1000 All pass -0.000015 0 1.000501 1

50 10000 All pass -0.000001 0 1.000047 1

Lognormal 30 50 All pass 1.664300 1.647821 2.147719 2.161197

50 100 All pass 1.651513 1.647821 2.117042 2.161197

50 1000 All pass 1.649248 1.647821 2.173071 2.161197

50 10000 All pass 1.647750 1.647821 2.157194 2.161197

Uniform 30 50 All pass 0.499936 0.500000 0.291800 0.288675

 50 100 All pass 0.500027 0.500000 0.290231 0.288675

50 1000 All pass 0.500000 0.500000 0.288823 0.288675

50 10000 All pass 0.500000 0.500000 0.288689 0.288675
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8. Summary 

This document provides verification test results for normal, lognormal, and uniform distributions 

that are used in Sandia’s Latin Hypercube Sampling (LHS) software as accessed through 

DAKOTA.  The purpose of this testing is to verify that the sample values being generated in LHS 

are distributed according to the desired distribution types.  The testing of distribution correctness is 

done by examining summary statistics, graphical comparisons using quantile-quantile plots, and 

format statistical tests such as the Chi-square test, the Kolmogorov-Smirnov test, and the Anderson-

Darling test.  The overall results from the testing indicate that the generation of normal, lognormal, 

and uniform distributions in LHS as accessed through DAKOTA is acceptable. LHS has been a 

powerful tool for sampling statistical distributions in uncertainty analyses for more than 20 years.  

The LHS UNIX version that is implemented in DAKOTA represents an investment to modernize 

the code capabilities and allow this valuable uncertainty analysis capability to remain viable for 

large-scale simulation models running under a Linux or UNIX operating system.   
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